Chaos and Logistic Map : part2
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@ Period doubling to chaos

© Chaotic motions

© Super-stable point

@ Tangent Bifurcation
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Period doubling to chaos

Period doubling to chaos

@ Trajectories are repeatedly doubled by increasing A
©e2—-4—+8—=>16---

@ Period becomes infinite at A ~ 0.893
e No longer periodic
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Period doubling to chaos

@ For A\ > 0.893, trajectories exhibit a band structure.

o Not periodic
e Not random: Non-uniform density of trajectories

@ Certain windows are identifiable
o k x 2™ period (k: primary numbers)
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Period doubling to chaos

Period-3 region

You can also see period-5 and 7 windows.
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Period doubling to chaos

Period-3 orbit
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@ Period-3 trajectories occur near A ~ 0.96

@ Those trajectories double in period to become period-6 trajectories
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@ A small difference in initial values expands.
o Eventually resulting in two trajectories that appears to behave

independently.
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Chaotic motions

Non-uniform density of trajectories
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Chaotic motions

Bands of trajectories

@ Bands of trajectories are expended and folded.
@ This is the origin of chaotic motion.
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Chaotic motions
Folding and overlapping bands

1A%

111

11

EFIULES Sal—a 10/17



Chaotic motions

Uniform initial points are absorbed into two bands

@ Two points B and M, which are initially close each other, separate
and behave almost independently.
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Super-stable point

Super-stable point: x = 1/2

fHr(@)=4x(1—-1z)
(@) =4X(1 —2z)
L @) = £ (@) -
L @ =AHUa@) (@) (3.1)
% V=i (A @) -% 1 (@) (32)
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Super-stable point
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Super-stable point

Trajectories of ©z = 1/2 are

keys to understand band structure

EFIMLESSal—sa R 14/17



Tangent Bifurcation

Tangent Bifurcation

@ \c : period-3 trajectories emerges
o A little bit lower X than A\¢
° f>[\3] (x) does not intersect with y = x line. There are narrow corridor.
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Tangent Bifurcation

@ Trajectories (per 3 times) stays long time at the narrow corridor
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Tangent Bifurcation

Intermittency (fER)

o After staying in the narrow corridor, trajectories varies widely.
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Note: x values are plotted every 3 steps.
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