Chaos and Logistic Map

モデル化とシミュレーション特論 2023 年度前期 佐賀大学理工学研究科 只木進一

- Chaos
- 2 Logistic Map
- Period Doubling
- Period Doubling to Chaos
- Sample Programs

Introcution: Where chaoses live?

- Henri Poincaré
 - Complex trajectories for 3-body problems (1880's)
- Edward Lorenz
 - Difficulties in weather forecasts (1960's)
 - Small initial differences expands.

https://www.google.com/search?q=Lorenz+model

- Turbulence: Kármán's vertex https://www.google.com/search?q=karman+vortex
- Logistic Map as a simplest chaos model routes to chaos, intermittency, band splitting, etc.

Logistic Map

- A simple model of population dynamics.
- A species which has off-springs
- If the number of individuals small, the number of off-springs will increase proportionally.
- If it is large, the number of off-springs will decrease due to the environmental constraints.

$$x_{n+1} = f_{\lambda}\left(x_n\right) \tag{2.1}$$

$$f_{\lambda}(x) = 4\lambda x (1 - x) \tag{2.2}$$

$$x_i \in [0,1], \qquad \lambda \in [0,1]$$

Fixed points for small $\lambda < 1/4$

- Fixed points are solutions of $x = f_{\lambda}(x)$
 - The size of the population remains unchanged.
- $\lambda < 1/4$
 - Only one fixed point at x = 0
 - The population extincts.
 - Example $\lambda = 0.2$

$1/4 < \lambda < 3/4$

- two fixed points at x = 0 and $(4\lambda 1)/(4\lambda)$
- trajectories do not go to x=0
- example $\lambda = 0.5$ from $x_0 = 0.1$ and 0.8

Stability of fixed points

ullet A point $x_0=x_{
m f}+\delta$ near a fixed point $x_{
m f}$

$$x_{1} = f_{\lambda} \left(x_{f} + \delta \right) = f_{\lambda} \left(x_{f} \right) + \delta \left. \frac{\mathrm{d}f_{\lambda}}{\mathrm{d}x} \right|_{x = x_{f}} + O\left(\delta^{2} \right) \tag{2.3}$$

- Stable: $|\mathrm{d}f_{\lambda}/\mathrm{d}x| < 1$
 - Deviation from the fixed point decreases
- Unstable: $|\mathrm{d}f_{\lambda}/\mathrm{d}x| > 1$
 - Deviation from the fixed point increases

Stability of $x_{\rm f} = 0$

$$\frac{\mathrm{d}f_{\lambda}}{\mathrm{d}x}\bigg|_{x=0} = 4\lambda \left(1 - 2x\right)\big|_{x=0} = 4\lambda \tag{2.4}$$

- Stable: $\lambda < 1/4$
- Unstable: $\lambda > 1/4$

Stability of $x_{\rm f} = \left(4\lambda - 1\right)/\left(4\lambda\right)$

$$\frac{\mathrm{d}f_{\lambda}}{\mathrm{d}x}\bigg|_{x=x_{\mathrm{f}}} = 4\lambda \left(1-2x\right)\big|_{x=x_{\mathrm{f}}} = 2-4\lambda \tag{2.5}$$

- $\mathrm{d}f_{\lambda}/\mathrm{d}x = 1$ at $\lambda = 1/4$
- $\mathrm{d}f_{\lambda}/\mathrm{d}x = -1$ at $\lambda = 3/4$
- Stable: $1/4 < \lambda < 3/4$

Period Doubling

• Period-2 trajectory appears at $\lambda = 3/4$

- The curve shows $f_{\lambda}(f_{\lambda}(x))$.
- Two crossing points between y = x and $y = f_{\lambda}(f_{\lambda}(x))$

$$x_{\pm} = f_{\lambda} (f_{\lambda} (x_{\pm})) = f_{\lambda} (x_{\mp})$$
$$= \frac{1}{8\lambda} \left[4\lambda + 1 \pm \sqrt{(4\lambda + 1)(4\lambda - 3)} \right]$$

(3.1)

Stabitily of period-2 trajectories

 $f_{\lambda}^{[n+1]}(x) = f_{\lambda}\left(f_{\lambda}^{[n]}(x)\right)$ $f_{\lambda}^{[1]}(x) = f_{\lambda}(x)$

 $\frac{\mathrm{d}}{\mathrm{d}x}f_{\lambda}^{[2]}\left(x\right) = f_{\lambda}'\left(f_{\lambda}\left(x\right)\right)f_{\lambda}'\left(x\right)$

 $\frac{\mathrm{d}}{\mathrm{d}x} f_{\lambda}^{[2]} \Big|_{x=x_{\pm}} = 4\lambda \left(1 - 2x_{\pm}\right) 4\lambda \left(1 - 2x_{\mp}\right)$

 $= 1 - (4\lambda + 1)(4\lambda - 3)$

The next instability

$$\lambda$$

 $\lambda = \frac{1 + \sqrt{6}}{4} \simeq 0.8624$

(3.6)

モデル化とシミュレーション特論

12/16

(3.2)

(3.3)

(3.4)

(3.5)

Period 4 trajectory

The curve in the right figure is $f_{\lambda}^{[4]}(\boldsymbol{x})$

Period 8 trajectory

Period Doubling to Chaos

- \bullet Trajectories are doubled by increasing λ
- Period becomes infinite at $\lambda \simeq 0.893$

Sample Programs

https://github.com/modeling-and-simulation-mc-saga/Logistic

- model/Logistic.java
 - Logistic map
 - setting λ
 - update() method
- analysis/PrintTrajectory.java
 - show trajectory in (x_n, x_{n+1}) -plane
 - show Logistic map : $f_{\lambda}^{[n]}(x)$