#### **Fractals**

モデル化とシミュレーション特論 2023 年度前期 佐賀大学理工学研究科 只木進一

- Introduction
- 2 Fractals by repeated operations
- Strange features of fractals
- 4 Fractal dimension
- 6 Affine transformation
- 6 Simulation
- Mandelbrot Set

## Shapes and Order

- Simple shapes
- Simple periodic orders
- Completely random shapes and phenomena
- Complex characteristics
  - coastlines, trees and leafs, hierarchical structure of organs, genetic information, languages, ecosystems, changes in stock markets, etc.
  - How can we characterize these complex features.
- Let us see some images by searching with a keyword fractal.

Sample program

https://github.com/modeling-and-simulation-mc-saga/AffineFractals

# Symmetry: 対称性

- Symmetry: invariance under operations
- Uniform: invariant under translation in any directions
- Radial: invariant under rotation
- Periodic: invariant under translation with a fixed length to fixed directions
- tiling without repeats
   https://www.newscientist.com/article/
   2365363-mathematicians-discover-shape-that-can-tile-a

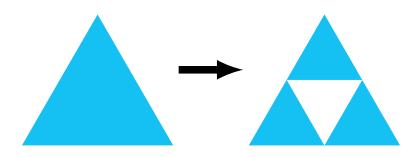
## Characteristic Length: 特徴的長さ

- Many natural and artificial systems have characteristic spacial or temporal lengths
  - Crystals have lattice constants, representing their periodic structure
  - The color of materials correspond to light of some characteristic wavelengths
- Noise does not have characteristic lengths
- Solar light https://www.e-education.psu.edu/meteo300/node/683

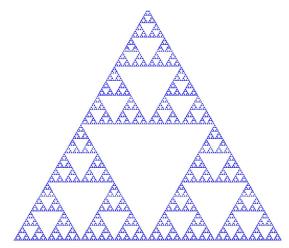
#### Scale Invariance

- Invariant under expansion and reduction
- Similar shapes across different scales
- No characteristic lengths
- Some special distribution of scales

## Sierpinski gasket



- Start from a equilateral triangle
- Remove the central equilateral triangle
- Remove the central equilateral triangles in remaining triangles.
- Repeat the operations



Each triangle is similar to the entire structure.

#### Koch Curve



- Start from a straight line.
- Divide the line into three equal lengthsegments.
- Place a equilateral triangle with a side length equal to one of three parts at the central segment.
  - The triangle does not have bottom side.
- Divide each line into three segments and place triangles at the each central segment.
- Repeat the operation



## Length of Koch Curve

- Assume the initial length as  $L(0) = \ell$
- Length at the first operation  $L(1) = (4/3)\ell$
- Length after n operations  $L(n) = (4/3)^n \ell$
- For  $n \to \infty$ ,  $L(n) \to \infty$ 
  - An curve with *infinite length* lives in a finite area!

## Area of Sierpinski Gasket

- Assume the initial area as S(0) = s
- Area at the first operation S(1) = (3/4)s
- Area after n operations  $S(n) = (3/4)^n s$
- For  $n \to \infty$ ,  $S(n) \to 0$ 
  - The area goes to zero!

## Dimension: 次元

- We believe living in a 3 spatial plus 1 temporal dimensional space.
- Dimensions are specified usually by integers
- Modern particle physics says that we live in a 10 or 26 dimensional space.

## Topological Dimensions

- Dimension: the number of coordinates for specifying one point in a space.
- Topological Dimension
  - Point: 0 dimensional object
  - Line or curve: 1 dimensional object
  - Plane or surface: 2 dimensional object
  - Space: 3 dimensional object
  - So on

## Dimensions considered by measurements

- Units for measurements.
- Volume :  $L^3$
- Change unit  $1/a \rightarrow \text{Value of its volume changes } a^3$ ex.  $1\text{m}^3 = 10^6\text{cm}^3$
- Magnify the linear scale by a: The volume becomes  $a^3$  times larger.
- Dimension describes how a quantity scales with the measurement unit.

## Self-similarity dimension

- A shape consists of b similar shapes, each of which is identical to the whole shape but scaled down by a factor 1/a.
- The fractal dimension of the shape is

$$D = \frac{\ln b}{\ln a} \tag{4.1}$$

- The shape appears similar when viewed at a scale 1/a.
- Square  $b=a^2$

$$D = \frac{2\ln a}{\ln a} = 2$$

# Self-similarity dimensions for Koch curve and Sierpinski gasket

Koch curve

$$D = \frac{\ln 4}{\ln 3} = 1.2618... > 1$$

thicker than a curve

Sierpinski gasket

$$D = \frac{\ln 3}{\ln 2} = 1.58496 \dots < 2$$

thinner than a plane

#### Hausdorff Measure

- A shape S is covered with enumerable shapes  $u_0, u_1, \ldots$
- Those diameters  $U_0, U_1, \ldots$  are less than L > 0.
- ullet The hausdorff measure of the shape S is defined as

$$H^{d}(S) = \lim_{L \to 0} \inf_{U_{i} < L} \left( \sum_{i} |U_{i}|^{d} \right)$$

#### Hausdorff dimension

- ullet As the value of d decreases from infinity, there exists a critical value at which the Hausdorff measure transitions from zero to infinity.
- The critical value is called the Hausdorff dimension.

## Capacity dimension

- Self-similarity dimension
  - Applicable only for shapes with complete self-similarity.
- Hausdorff dimension
  - Includes limit operations.
  - Difficult for applying for realistic cases
- Need effective methods applicable for both observations and simulations.
- Fractal dimension provides a statistical interpretation.

## Capacity dimension

- A shape is covered with b similar shapes scaled down by a factor 1/a.
- The capacity dimension  $D_c$  is defined as

$$D_c = \frac{\ln b}{\ln a}$$

## Box-Counting method

- Fractal dimension for data
- 2 dimensional cases
  - ullet Squares covering the shape : linear size  $\ell$
  - The number of squares :  $n(\ell)$
  - Change its size to  $\ell/m$
  - repeat
- Plot  $n(\ell)$  against  $\ell$  in log-log plot.
- Fractal dimension : slope of the line

#### Affine transformation

• rotation, scaling, shear (剪断), translation

$$\vec{x} \mapsto A\vec{x} + \vec{b}$$
 (5.1)

- Express as a map  $W: X \to X$
- Consider a set of maps:  $\{W_i\}$
- Fixed point of the map: for a set of points  $U \subset X$

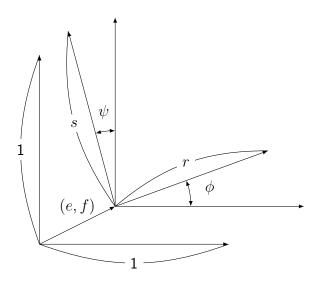
$$\bigcup_{i} W_i(U) = U \tag{5.2}$$

## Expressions of Affine transformation

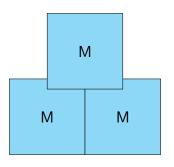
- $L \times L$  initial image
- parameter set :  $(r, s, \phi, \psi, e, f)$

$$\vec{x} \mapsto \begin{pmatrix} r\cos\phi & -s\sin\psi \\ r\sin\phi & s\cos\psi \end{pmatrix} \vec{x} + \begin{pmatrix} eL \\ fL \end{pmatrix}$$

### Affine Parameters

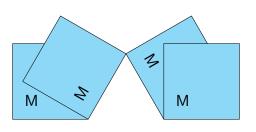


## Sierpinski gasket



$$\begin{aligned} & \{(r,s,\phi,\psi,e,f)\} \\ & = \left\{ \left(\frac{1}{2},\frac{1}{2},0,0,0,0\right), \left(\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},0\right), \left(\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{\sqrt{3}}{4}\right) \right\} \end{aligned}$$

#### Koch curve



$$\begin{split} & \left\{ (r,s,\phi,\psi,e,f) \right\} \\ & = \left\{ \left( \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0 \right), \left( \frac{1}{3}, \frac{1}{3}, \frac{\pi}{3}, \frac{\pi}{3}, 0, 0 \right), \right. \\ & \left. \left( \frac{1}{3}, \frac{1}{3}, -\frac{\pi}{3}, -\frac{\pi}{3}, \frac{1}{2}, \frac{1}{3} \sin \left( \frac{\pi}{3} \right) \right), \left( \frac{1}{3}, \frac{1}{3}, 0, 0, \frac{2}{3}, 0 \right) \right\} \end{split}$$

#### Affine transformation in Java

- Built-in AffineTransform class
  - initialize with affine parameters  $(r, s, \phi, \psi, e, f)$
- Preparing operation
  - AffineTransformOp class
  - Needs a AffineTransform instance for initialization
- Transforming images
  - AffineTransformOp.filer() method

#### Classes

- AbstractFractal class
  - Initialize image
  - Update: Affine transformation
  - Show map
- Each fractal class only defines Affine transformation.

#### Mandelbrot Set

ullet Consider a complex numbers c and a series

$$z_0 = c \tag{7.1}$$

$$z_{n+1} = z_n^2 + c (7.2)$$

 $\bullet$  The Mandelbrot set M is defined as a set of complex numbers c for which the sequence  $z_{\infty}$  remains bounded.

https://github.com/modeling-and-simulation-mc-saga/Mandelbrot

