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Sample programs

@ https:
//github.com/modeling-and-simulation-mc-saga/TSP
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https://github.com/modeling-and-simulation-mc-saga/TSP
https://github.com/modeling-and-simulation-mc-saga/TSP

Traveling Salesman Problem

Traveling Salesman Problem

@ Given a set of distances d(c;, ¢;) between pairs of N cities
o Assume the network is complete (any pairs of cities are
connected)
v e Set very long distance for disconnected pairs
@ Find the shortest path, which visits all cities once and comes
back to the start.
@ Hamiltonian circuits
o Exact method requires to study all possible circuits

@ Example of IEM
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Traveling Salesman Problem

[
@ The number of possible circuits: (N — 1)!/2 M.

o Explodes faster than exponential functions for large N
e Impossible to solve realistic problems in realistic time

@ Stirling’s formula approximating factorials

lnn!:mn—n—l—O(lnn) (1.1)
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Traveling Salesman Problem
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Approximate Optimum Solutions

Approximate Optimum Solutions

@ Do realistic problems require the exact solutions?
(\’—\_‘

(& Obtain good solutions within adequate time available
o Need methods for obtaining good approximate solutions.
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Approximate Optimum Solutions

The Nature Can Optimize?

«o Crystal growth processes through annealing (fR/%)
clean crystals through slow cooling down processes

— @ Structure of proteins
functional structure through in vivo (E{&A) synthesis

+ @ Behavior of ants
searching shorter paths to feed

—e Heredity (B1R)
species with higher fitness survive

@ Learn approximate optimization from the nature
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Approximate Optimum Solutions

Optimization in the Nature?

e Search solution space randomly
L@ Search closely subspaces with good features
@ very simple
e how to construct appropriate methods
e algorithms with random numbers
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Statistical Physics at Finite Temperature

Statistical Physics at Finite Temperature

NS NEE o Aot it

@ General frameworks for statistical physics
o General theory for many particle systems
@ System with energy Ievels

o finite temperature@absolute temperature)

@ Boltzmann constant kg, converting temperature to energy

>r=zew (7L &y
@: %exp (— ka) (3.2)
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Statistical Physics at Finite Temperature

Partition functions

ARV

@ Z is the normalization constant of the Boltzmann distributions.

@ Z is called partition function, because various statistical
quantities can be derived through Z. For example:

@ High energy states appear with exponentially low probabilities
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Statistical Physics at Finite Temperature

Importance Sampling

@ How to evaluate (E) by simulations?

@ Simple Monte Carlo simulation by randomly generating states ¢
will fail.
e Random sampling fails choosing the dominant states from the
huge number of states.

@ Importance sampling: sampling states with p oc e BE:
(67" =kgT)
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Statistical Physics at Finite Temperature

Outline of Monte Carlo Simulations

@ The current state p

@ Select randomly one of neighboring states@
e Transittovif £, < E,
@ Otherwise

o Transit to v with probability

o kg = 1 hereafter.
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Statistical Physics at Finite Temperature

Image of transition between states

o Case BV < EH
e~ (BV—EY)/T

@ For equilibrium

eI Tp(v) = p(p)
probabilities for each close loop
p() & BT p(o) o BT
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Simple MC Simulation

Simple MC Simulation

o Consider n states with energy levels {E;}

@ Assume any pairs of states connected (transition is possible)
@ Set some value of temperature T’

@ Start from randomly selected state &

@ For each step, select randomly one of other state /. And
perform state transition.

@ Count visits for each state.

@ Compute relative frequency of visits.
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Simple MC Simulation

Example

e [£;=10,1,2,4]
e T=1and T =10 —
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Simple MC Simulation
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Equilibrium distributions expected theoretically realize.
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Simulated Annealing

Simulated Annealing

Simulate slow cooling processes
o finite temperature T’

e Search states (Hamiltonian paths) randomly with transition
probabilities specified by T'
o Wide search for high temperature
o Narrow search for low temperature
e Monte Carlo Simulation (methods for statistical physics)
@ Cooling down gradually

o Narrow the searching area
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Simulated Annealing

Hamilton path and its update

@ A close path p for visiting N cities
=2 ou=d L Ay =] (5.1)

@ path length

i

D' = d(d, ) (5.2)
0

B
Il
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Simulated Annealing

@ Select two points (p, q) in p randomly
S O T T L A e 1 [
M - [00761) 7Cp7170pvcp+1: 7Cq7176qch+17

vy = cg} (5.3)

@ Construct the new close path v by inverting the path between p

and ¢ in
[ b I T 1 T
V= [00761)"' 7Cp717cqacq717"' 7Cp+1acp7cq+17
m oo
-y, Cy —co} (5.4)
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Simulated Annealing
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Simulated Annealing

o if DV < DV
e Employ the new path v
e Obtain shorter path

o if DV > D#
o Employ the new path v with probability

exp <—DVTD”> (5.5)

e Employ longer path with probabilities specified by the
temperature
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Simulated Annealing

Annealing (7'%)

@ High temperature
e Try wide variety of routes
@ Lowering temperature slowly
o Narrow the variety

e Finally the shortest paths can survive
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Simulation

Class Plan: Route class

List<Point> path : sequence of nodes
double pathLength : length of the route
Initialize with some sequence of nodes

calcPathLength(): calculate path length

nextRoute(): generate new path
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Simulation

Class Plan: Simulation class

@ Change route stochastically

e oneMonteCarloStep(): N trials
e oneFlip(): trial to change route

@ Lowering temperature

e cooling()
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