Traveling Salesman Problem

モデル化とシミュレーション特論 2023 年度前期 佐賀大学理工学研究科 只木進一

- Traveling Salesman Problem
- 2 Approximate Optimum Solutions
- Statistical Physics at Finite Temperature
- Simple MC Simulation
- Simulated Annealing
- 6 Simulation

Sample programs

• https: //github.com/modeling-and-simulation-mc-saga/TSP

Traveling Salesman Problem

- ullet Given a set of distances $d(c_i,c_j)$ between pairs of N cities
 - Assume the network is complete (any pairs of cities are connected)
 - ✓ Set very long distance for disconnected pairs
- Find the shortest path, which visits all cities once and comes back to the start.
 - Hamiltonian circuits
 - Exact method requires to study all possible circuits
 - Example of NP problems

- ullet The number of possible circuits: (N-1)!/2
 - ullet Explodes faster than exponential functions for large N
 - Impossible to solve realistic problems in realistic time
- Stirling's formula approximating factorials

$$\ln n! = \underline{n \ln n} - n + O(\ln n)$$

$$\ln \chi = \log_e \chi$$

$$\ln \chi = \sum_{k=1}^{N} \ln k$$
(1.1)

K/ 1

n	n!
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800

Approximate Optimum Solutions

- Do realistic problems require the exact solutions?
 - Obtain good solutions within adequate time available
 - Need methods for obtaining good approximate solutions.

The Nature Can Optimize?

- Crystal growth processes through annealing (徐冷) clean crystals through slow cooling down processes
- Structure of proteins functional structure through in vivo (生体内) synthesis
- Behavior of ants searching shorter paths to feed
- ▶● Heredity (遺伝)
 species with higher fitness survive
 - Learn approximate optimization from the nature

Optimization in the Nature?

- Search solution space randomly
- Search closely subspaces with good features
 - very simple
 - how to construct appropriate methods
 - algorithms with random numbers

Statistical Physics at Finite Temperature

有限温度9新於

- General frameworks for statistical physics
 - General theory for many particle systems
- System with energy levels $\{E_i\}$
- finite temperature T absolute temperature)
- ullet Boltzmann constant k_B , converting temperature to energy

$$P_i = \frac{1}{Z} \exp\left(-\frac{E_i}{k_B T}\right) \tag{3.1}$$

$$\sum_{i} \exp\left(-\frac{E_i}{k_B T}\right) \tag{3.2}$$

Partition functions

- Z is the normalization constant of the Boltzmann distributions.
- Z is called partition function, because various statistical quantities can be derived through Z. For example:

$$\langle E \rangle = Z^{-1} \sum_{i} E_{i} \exp\left(-\frac{E_{i}}{k_{B}T}\right)$$

$$= k_{B}T^{2} \frac{\partial \ln Z}{\partial T}$$

$$(3.3)$$

High energy states appear with exponentially low probabilities

Importance Sampling

- How to evaluate $\langle E \rangle$ by simulations?
- ullet Simple Monte Carlo simulation by randomly generating states i will fail.
 - Random sampling fails choosing the dominant states from the huge number of states.
- Importance sampling: sampling states with $p \propto e^{-\beta E_i}$ $(\beta^{-1} = k_B T)$

Outline of Monte Carlo Simulations

- ullet The current state μ
- Select randomly one of neighboring states $\rightarrow \nu$
- Transit to u if $E_{
 u} < E_{\underline{\mu}}$
- Otherwise
 - ullet Transit to u with probability

$$\exp\left(-\frac{E_{\nu}-E_{\mu}}{T}\right) \geq O \tag{3.4}$$

• $k_B = 1$ hereafter.

Image of transition between states

• Case $E^{\nu} < E^{\mu}$

• For equilibrium

$$e^{-(E^{\mu}-E^{\nu})/T}p(\nu) = p(\mu)$$
 (3.5)

probabilities for each close loop

$$p(\mu) \propto e^{-E^{\mu}/T}, \quad p(\nu) \propto e^{-E^{\nu}/T}$$
 (3.6)

Simple MC Simulation

- Consider n states with energy levels $\{E_i\}$
- Assume any pairs of states connected (transition is possible)
- ullet Set some value of temperature T
- ullet Start from randomly selected state k
- For each step, select randomly one of other state ℓ . And perform state transition.
- Count visits for each state.
- Compute relative frequency of visits.

Example

- $E_i = [0, 1, 2, 4]$
- \bullet T=1 and T=10

Equilibrium distributions expected theoretically realize.

Simulated Annealing

Simulate slow cooling processes

- ullet finite temperature T
 - \bullet Search states (Hamiltonian paths) randomly with transition probabilities specified by T
 - Wide search for high temperature
 - Narrow search for low temperature
 - Monte Carlo Simulation (methods for statistical physics)
- Cooling down gradually
 - Narrow the searching area

Hamilton path and its update

 \bullet A close path μ for visiting N cities

$$\gamma \qquad \mu = \left[c_0^{\mu}, c_1^{\mu}, \cdots, c_{N-1}^{\mu}, c_N^{\mu} = c_0^{\mu} \right]$$
(5.1)

• path length

$$\underline{D^{\mu}} = \sum_{k=0}^{N-1} d\left(c_k^{\mu}, c_{k+1}^{\mu}\right) \tag{5.2}$$

• Select two points (p,q) in μ randomly

$$\mu = \left[c_0^{\mu}, c_1^{\mu}, \cdots, c_{p-1}^{\mu}, c_p^{\mu}, c_{p+1}^{\mu}, \cdots, c_{q-1}^{\mu}, c_q^{\mu}, c_{q+1}^{\mu}, \cdots, c_{N-1}^{\mu}, c_N^{\mu} = c_0^{\mu} \right]$$

$$(5.3)$$

 \bullet Construct the new close path ν by inverting the path between p and q in μ

$$\nu = \left[c_0^{\mu}, c_1^{\mu}, \cdots, c_{p-1}^{\mu}, c_{q}^{\mu}, c_{q-1}^{\mu}, \cdots, c_{p+1}^{\mu}, c_{p}^{\mu}, c_{q+1}^{\mu}, \cdots, c_{N-1}^{\mu}, c_{N}^{\mu} = c_0^{\mu} \right]$$
(5.4)

- if $D^{\nu} < D^{\mu}$
 - ullet Employ the new path u
 - Obtain shorter path
- if $D^{\nu} > D^{\mu}$
 - ullet Employ the new path u with probability

$$\exp\left(-\frac{D^{\nu}-D^{\mu}}{T}\right) \tag{5.5}$$

 Employ longer path with probabilities specified by the temperature

Annealing (徐冷)

- High temperature
 - Try wide variety of routes
- Lowering temperature slowly
 - Narrow the variety
- Finally the shortest paths can survive

Class Plan: Route class

- List<Point> path: sequence of nodes
- double pathLength: length of the route
- Initialize with some sequence of nodes
- calcPathLength(): calculate path length
- nextRoute(): generate new path

Class Plan: Simulation class

- Change route stochastically
 - ullet oneMonteCarloStep(): N trials
 - oneFlip(): trial to change route
- Lowering temperature
 - cooling()

