Introduction

EFIbe T al—oa s
2023 FEEHIHA
FEEARFETEHER R[IAHE—

EFIMLE> T alL—>a U 45H 1/33

@ The purpose of this lecture
© Preparing tools

© Reviewing OOP

@ Various sort methods

© Sample Programs

@ Review sorting in the viewpoint of OOP

EFIMMLE> I aL—> 3 5H 2/33

The purpose of this lecture

The purpose of this lecture

@ Introducing fundamental methods for simulations

@ Improving skills in Object-Oriented-Programming

EFIMEES T2l -0 a5 3/33

The purpose of this lecture

Examples

Differential equations and their numerical solutions

Properties of random numbers : laws of large numbers, random
walk, central limiting theorem

Monte Carlo method
Cellular automata
Neural networks
Fractals

Chaos

® 6 66 o o

EFIMLE> T alL—>a U 45H 4/33

Preparing tools

Preparing tools : Java 17

@ Amazon-Corretto
https://aws.amazon.com/jp/corretto/

@ Select an adequate installer depending on your platform.

@ The installers with the default settings install the application
into C:\Program Files\Amazon Corretto. You do not need
to change the settings.

EFIMEES T2l -0 a5 5/33

https://aws.amazon.com/jp/corretto/

Preparing tools

Text editors

@ Do you have a good text editor in your PC?
@ Visual Studio Code

https://azure.microsoft.com/ja-jp/products/
visual-studio-code/

@ Do not use the installer downloaded from Microsoft Store.
@ Important point in installation

o Check two checkboxes of FCode TRI< 1 in your context menu.
T B I

EMIRIORR
FTTDENAADEEIRLT (L
?’séuta‘ Studio Code o U2 b — ST TIBIBMAR TEEIRLT. DA &bl wbLT(
o

PA BT D:

O FA8bs7 LPA A ERTB0)

fanin

TH2F0-3-07%4)b JUTHAL AZ2—(C [Code TRHK] PHVaLEIENTD
%WJD =F-0F(AN TTHAR 221 [Code THK] PHY/3EBNT
O 4o b T B P WDIEEBOTT 8 -2 T, Code 5275

PATH (BN (FRRESH{% ({52 T 48D

<R3 et
EFIMEES T2l -0 a5 6/33

https://azure.microsoft.com/ja-jp/products/visual-studio-code/
https://azure.microsoft.com/ja-jp/products/visual-studio-code/

Preparing tools

NetBeans

@ Apache NetBeans
https://netbeans.apache.org/download/nb17/

@ Check that Amazon Corretto installed being assigned to be jdk

JDK™ for the Apache Nett
G¥Program FileskAmazon Conetto¥idk 1108_10]| Bromse,

< Back Cancel

@ You may use your favorite IDE, such as Eclipse, IntelliJ, etc.

EFIMEES T2l -0 a5 7/33

https://netbeans.apache.org/download/nb17/

Reviewing OOP

Reviewing OOP

@ Defining classes

o Fields and methods
o Access controls: private, protected, and public
e static and final

@ Class inheritance
@ Abstract Classes

@ Sorting as an example

EFIMEES T2l -0 a5 8/33

Various sort methods

Various sort methods

@ Sort method with n? comparisons
e bubble sort, selection sort, insertion sort
@ Sort method with nlogn comparisons
e merge sort, quick sort
e n? > nlogn forn>>1
@ Observe the number of comparisons for various sorting methods

EFIMEES T2l -0 a5 9/33

Various sort methods

Order of comparisons

Order of comparisons

10000

8000

6000

4000

2000

. xz .

. rlnx .

.........a..........-.;-.-.«.a*ion--niou
Py

EFIMLrySal—va >‘%ﬁﬁ

20 40 60 80 100

10/33

Various sort methods

Order of comparisons in logalismic scales

10" Order of comparisons
. xz
zlnx
10° .
10° e .
104 / K .
107

0
-E?—”)MI:!:*‘/E:LI/—*‘/E}QF(# 102 10 10° 11/33

Various sort methods

Bubble sort

Algorithm 1 Bubble sort
n is the size of the array d
fori=n:i>0;i— —do
forj=0;7<i—1;j++ do
if dj+1 < dj then
swap d;11 with d;
end if
end for
end for

Attention: two nested loops require O(n?) comparisons.

EFIMEES S aL—3 3 5H 12/33

Various sort methods

Bubble sort in action

the largest element is sorted out at the rightmost by one execution of

the inner loop with n — 1 comparisons

EFIMLE> T alL—>a U 45H

13/33

Various sort methods

selection sort

Algorithm 2 selection sort

n is the size of the array d
fori=0:i<n—-1:7i+-+ do
m is the position of the smallest element between i and the last
if m # i then
swap the element at ¢ with that at m
end if
end for

Attention : searching the smallest element is in the inner loop and
requires O(n) comparisons.

EFIMEES S aL—3 3 5H 14/33

Various sort methods

Insertion sort

Algorithm 3 insertion sort

n is the size of the array d
fori=0:i<n:;i++ do
m is the index of the smallest element between ¢ and the last
if m # i then
insert element at m into ¢
end if
end for

Attention : searching the smallest element is the inner loop and
requires O(n) comparisons.

EFIMEL S S 2L -0 2 50 15/33

Various sort methods

Merge sort

@ Dividing list into the smallest size
e Needs O(Inn) steps
@ Merging sorted lists

e Merging two sorted lists with n elements requires O(n)
comparisons

EFIMEL S S 2L -0 2 50 16/33

Various sort methods

Merge sort: dividing list into the smallest size

3 8 5 2 7 6 1 4
3 8 5 2 7 6 1 4
3 8 5 2 7 6 1 4

EFIMEES S aL—3 3 5H 17/33

Various sort methods

Merge sort: merging lists

3 8 5 2 7 6 1 4
3 8 2 5 6 7 1 4
2 3 5 8 1 4 6 7

EFIMEL S S 2L -0 2 50 18/33

Various sort methods

merge sort

Algorithm 4 merge sort

n: the size of the array d
kleft - Oa kright =n
procedure SORTSUB(Kieft, Kright)
Emiddie = (Kieft + Kright)/2 (truncate to integer)
SORTSUB(Kieft, Kmiddle)
SORTSUB(kmidd|e, kright)
Combining two sorted lists
end procedure

e Merging operations in horizontal direction needs O(n)
comparisons

@ Number of layers in vertical direction is O(logn)

EFIMEL S S 2L -0 2 50 19/33

Various sort methods

Quick sort

@ Select one element called pivot.

@ Divide the list into two parts: a list with smaller elements than
the pivot and the remaining.

e Dividing a list requires O(n) steps
o The number of division is O(Inn)

EFIMEL S S 2L -0 2 50 20/33

Various sort methods

Quick sort

Algorithm 5 quick sort

n: the size of the array d

kleft - O; kright =n

procedure SORTSUB(Kieft, kright)
Emiddie = PARTITION (Kief, Kright)
SORTSUB(k]eft, kmiddle)
SORTSUB(kJmidd|e, kright)

end procedure

EFIMLE> T alL—>a U 45H

21/33

Various sort methods

Quick sort : continued

Algorithm 6 partition

procedure PARTITION(k, ()
v =dp_1 > pivot
1=k, g=0—-1
while : < j do
Search an element greater than or equal v from the left. Its
position is .
Search an element less than or equal v from the right. Its
position is 7.
if - < j then
Swap d; with d;
end if
end while
Swap d; with d,_;
sruee Retury 3o5% 22/33

Various sort methods
Example: quick sort

3 8 5 2 7 6 1 4

EFIMEL S S 2L -0 2 50 23/33

Various sort methods
Example: quick sort, continued

3 1 2 4 7 6 8 5
1 3 2 4 5 6 8 7
1 2 3 5 6 8 7

5 6 7 8

EFIMEES S aL—3 3 5H 24/33

Sample Programs

Get Sample Programs by NetBeans

"Teams’ =" Git" =" Clone"
[vaomersonon K]

Steps Remote R itory
1. Remote Specify Git Repository Location:
R it
2. R:::)::z grryanches Repository URL: Lhub.com/mode|ing-and-simulation-mc-saga/ListSort v‘
3. Destination http[s]://host.xz[:port]/path/to/repo.git/
Directory
User: (leave blank for anonymous access)
Password: OSave Password

Proxy Configuration...

Specify Destination Folder:

Clone into: ¥Users¥tadaki¥Documents¥NetBeansProjects¥Li Browse...

(Leave empty to specify the destination later)

<Back || Next> Finish Cancel Help
EFIMEL S SaL—D 5 UBR 25/33

Sample Programs

Get sample programs by Git command

@ Obtain Git from https://git-scm.com/downloads
@ Use command

git clone repository

EFIMEL S S 2L -0 2 50 26/33

https://git-scm.com/downloads

Sample Programs

Repository

@ https://github.com/modeling-and-simulation-mc-saga/
ListSort

@ python library for drawing graphs
https:

//github.com/modeling-and-simulation-mc-saga/1lib

EFIMEES S aL—3 3 5H 27/33

https://github.com/modeling-and-simulation-mc-saga/ListSort
https://github.com/modeling-and-simulation-mc-saga/ListSort
https://github.com/modeling-and-simulation-mc-saga/lib
https://github.com/modeling-and-simulation-mc-saga/lib

Review sorting in the viewpoint of OOP

Review sorting in the viewpoint of OOP

@ Minimum common functions for sorting
o Target objects are required to have large-and-small relationship
e Minimum functions for sorting : compare and swap
@ Comparable interface for target objects
o Interface: special purpose abstract classes
@ Only defining abstract methods and constants
o Classes with Comparable interface

@ Method compareTo() defines how to compare with another
instance.

o See Data class

EFIMEL S S 2L -0 2 50 28/33

Review sorting in the viewpoint of OOP

Extended for loops

for (T t : list){
do something

1 /*

2 for (int © = 0 ; © < list.size() ; i++) {
3 Tt = list.get(i);

4 do something

5 7}

6 */

7

8

9

}

EFIMLE> T alL—>a U 45H

29/33

Review sorting in the viewpoint of OOP

Lambda expressions and List

@ Lambda expression: anonymous implementation of interfaces

@ Consumer interface: an operation accepting a single input and
returning nothing.

List<T> list;
list.forEach(t -> {do something});
/*
for (T t: list){
do something
}

*/

N O UA W

EFIMEES T2l -0 a5 30/33

Review sorting in the viewpoint of OOP

Inheritance

@ Subclasses inherit fields and methods of their superclass.
o Private fields and methods are not accessible directly.

@ Subclasses extending their superclass by adding fields and
methods, or overriding them.

@ abstract methods must be implemented.

EFIMLE> T alL—>a U 45H 31/33

Review sorting in the viewpoint of OOP

AbstractSort

Sorting objects which implement Comparable interface
Not implementing concrete sorting methods
Implementing common methods required for sorting

Function for counting comparisons

Derived classes
BubbleSort, InsertionSort, SelectionSort, MergeSort, QuickSort

EFIMLE> T alL—>a U 45H 32/33

Review sorting in the viewpoint of OOP

Simulation results

@ n: the number of elements
e bubble sort and etc. need O (n2) comparisons
e merge sort and etc. need O (nlogn) comparisons

10
Bubble Sort
Insertion Sort
10+ Selection Sort
« Merge Sort .
. Quick Sort
10 — g2 -
— zlnz >
Z10 . :
© .
10° : .
10'
10°
10° 10" 10% 10

EFIMEEY T aL—2 a ViR N 33/33

	The purpose of this lecture
	Preparing tools
	Reviewing OOP
	Various sort methods
	Sample Programs
	Review sorting in the viewpoint of OOP

